
Three Dimensional Schedule Visualizer
Project Team Member Jacob Yoon Zeng Yew

Jacob.Yoon001@umb.edu
University of Massachusetts Boston

Figure 1: Example usage.

ABSTRACT
Visualization is a powerful illustration tool. Third Dimensional
visualization of an individual’s schedule provides scale, readability
and overall comprehension of the time spent on any activity.

KEYWORDS
WebGL, Visualization, Tool, Self-help, Time, Illustration, 3D, Three.js,
Schedule, Interactive

ACM Reference Format:
Project Team Member Jacob Yoon Zeng Yew. 2019. Three Dimensional
Schedule Visualizer. In CS460: Computer Graphics at UMass Boston, Fall 2019.
Boston, MA, USA, 4 pages. https://CS460.org

1 INTRODUCTION
Humans are inherently visual creatures; when something is large
next to something tiny, we intuitively understand the scale of it.

When it comes to time management, traditional scheduling tools
are often spreadsheets, written on paper or in timetable form.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CS460, Fall 2019, Boston, MA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 1337.
https://CS460.org

While these methods may be effective for some, visual learners
may be quick to disregard or bore easily.

While this project is not intended to replace these long-established
practices, it seeks to provide an additional dimension to the visual-
ization aspect, an alternative to conventional time organizational
methods.

By utilizingWebGL, more specifically on the Three.js framework,
this project is realized.

2 RELATEDWORK
This project employs Three.js [1] as its main framework com-
plimented by Guify [2], a graphical user interface for the sched-
ulers main controls. Facetype [3] was used to convert fonts to a
JavaScript.js file. Used a dated version of Stats.js by Three.js[1]
provided by GitHub user stemkoski[4].

3 METHOD
By using Three.js, a floor plane was created and a sky-box imple-
mented to introduce life to the visualizing space. Cuboids are used
in place of total minutes in a day.

In order to add new timecuboids, a graphical user interface or
GUI, was required for seamless user interfacing. Guify proved to
be easy to use, customize visually and functionally. Users will have
to use the drop down menu to select the Day they wish to add
the activity, include a Activity description, select the start and
end of said activity, customize the color of the timecuboid before

https://CS460.org
https://CS460.org

CS460, Fall 2019, Boston, MA

adding the activity by clicking on "Add Activity". To test for per-
formance, a Frames per second monitor was added to the bottom
right corner. The FPS counter can also be hidden through the GUI.
A list of Known Bugs and Issues are also available through the GUI.
Three.js’s TextGeometry was placed on the now textured marble
floor plane to provide visual indicate days.

3.1 Implementation
Two main files were used in the creation of this project: index.html
and activity.js. index.html is where the scripts, both HTML and
JavaScript code are implemented. activity.js is where the JavaScript
object, Activity is located. The Activity Object requires seven argu-
ments namely; DayName, DayPosition, ActivityDescription, Dura-
tion, StartAct, EndAct,Color .

Activity = function(DayName, DayPosition,
Activity_Description, Duration,
Start_Act, End_Act, Color)

Initially called Dayactivity, the Activity object required enough
user generated arguments to create the appropriate size (Duration),
customisation (Color), position (DayPosition) and user tooltips (Ac-
tivitydescription, StartAct EndAct)

Within index.html, relevant scripts were sourced, variables de-
clared, html <divs> created and gui implemented.
window.onload = function()

was used to initialize code and files necessary for this project. Here
is where Three.js was used to create a
scene = new THREE.Scene();
camera = new THREE.PerspectiveCamera(fov, ratio, zNear, zFar);

Where fov,ratio, zNear and zFar are 80, window.innerWidth / win-
dow.innerHeight, 1,10000 respectively. with the camera set
camera.position.set(0, 1000, 500);

and THREE.WebGLRenderer set, light was still required to shed
light on the scene. This is where THREE.AmbientLight() and
THREE.DirectionalLight was added.

THREE.js’s TextureLoader loaded the marble floor and
a THREE.PlaneBufferGeometry was adjusted to the appropriate
size, then the THREE.MeshBasicMaterial. The floor is then created
as a THREE.Mesh and then added to the scene.

THREE.OrbitControls were opted for this project for its usability
and a consistent structure.

The GUI then needed to parse this information to the creation
of a new Activity object.

Within activity.js was the creation of the timecuboids.
var cubeGeo = new THREE.BoxBufferGeometry(120, this.cubeSize, 120);
var cubeMat = new THREE.MeshPhongMaterial({color: '#FF0000'});
var mesh = new THREE.Mesh(cubeGeo, cubeMat);

where this.cubeSize, is the Duration of the activity, its measured in
minutes. This comes to the max height of 1440,

24 hours in a day * 60 Minutes in an Hour
= 1440 Minutes

This would be needed to display relevant information in addition
to setting the timecuboid’s offset[Challenge 3].

Color set, and ActivityDescription was tied to the mesh as

mesh.userData.tooltipText = Activity_Description + ": "
+ timeConvert(Start_Act)
+ " to "
+ timeConvert(End_Act);

The function timeConvert(n) will be covered in Milestone 4 and
challenge 4.

3.2 Milestones
The project’s development was spread across 3 weeks.

3.2.1 Milestone 1. The framework, Activity, timecuboid and the
GUI were conceptualized and written in pen and paper.

3.2.2 Milestone 2. The background and floor implemented, camera
working and GUI framework added.

3.2.3 Milestone 3. timecuboids were added but not in the right
positions [See Challenge 2]

3.2.4 Milestone 4. GUI was tied to the creation of Activity.

3.2.5 Milestone 5. Adding 3D text to the floor.

3.2.6 Milestone 6. Making sure tooltips displayed relevant infor-
mation when user mouse hovered above it.

3.2.7 Milestone 7. Ensured edge cases such as intersections of
timecuboids [see Challenge 1] cease.

3.3 Challenges
There were several challenges that proved difficult and often felt im-
possible until it was done. Detailed here are some of the challenges
faced as a novice programmer. In no particular order, chronological
or otherwise.

• Challenge 1: Time cuboids intersection Arguably biggest
challenge I faced was ensuring user input does not intersect
one another. As it appears there are several edge cases to
consider, such as (but not limited to): if the bottom of a
timecuboid intersecting with the beginning of a timecuboid,
vise versa, a timecuboid within a timecuboid, a timecuboid
on top of an existing timecuboid.
A considerable amount of time was burned to ensure inter-
sections were considered [see Figure 2].
But alas, if the cubes were the same sizes, an error is not
thrown at the user. After four days of contemplation, the
project must continue.
Errors have been added to be thrown at the User when one
attempts to make an intersections between these cubes.

• Challenge 2: Positioning cuboids
While there is a list to select the Days for the Activities, there
isn’t any indication on where they will be positioned.
The quick and dirty method was to create two array, one for
an array of name of days and the other the positions array.
By using the built in indexOf() of the selected day on the list,
then matching the index of the day positions array. The 3D
text geometry also utilizes this array of daypositions.

• Challenge 3: Offset As it appears, the time cuboids required
re-positioning as they seemed to be clipping through the
floorplane. After some few days of burning the midnight

Three Dimensional Schedule Visualizer CS460, Fall 2019, Boston, MA

Figure 2: If loops and logic to prevent intersections

oil, it turns out the origin of a BoxBufferGeometry is at the
center. The offset then was simply the size of any particular
cube divided by 2.

• Challenge 4: Time Conversion Needing to have the drop
down list human readable, an array of time from 0:00 to
24:00 was needed. Fortunately this can be done in 7 lines of
JavaScript

var duration = [], i, j;
for(i=0; i<24; i++) {

for(j=0; j<4; j++) {
duration.push(i + ":" + (j===0 ? "00" : 15*j));

};
};

duration.push(24 + ":" + "00");

24:00 was manually added as the code itself starts at 0:00 but
stops at 23:45.

• Challenge 5: fonts typefaces Three.js’ fontloader turned
out to be much more difficult to implement than originally
thought. By way of gero3’s Facetype.js converter, conversion
of a font format to that of .js was only three clicks away.

• Challenge 6: Other Edge Cases
There also exists another edge case possibility, What if Users
decide to (or inadvertently) select the wrong time? That is

Figure 3: Error thrown at User if timecuboids intersect

when Select Start is the same as Select End, or when Select
End Is greater than Select Start.
In figure 3, displays the error thrown.

4 RESULTS
After some hardships, the prototype seen here in image 4, bore fruit.
The result is an alternative to current methods.

Figure 4: Protoype GUI and timecuboid sketch

Or you could add tables (see Table 1 - maybe with some timings?).

CS460, Fall 2019, Boston, MA

Table 1: Performance across multiple browsers and devices

Device Performance
Android (Samsung S9+) 60 FPS
Android (Samsung S7) 60 FPS

PC (Browser Google Chrome Version 79.0.(64-bit)) 60 FPS
PC (Browser Firefox Version 71.0 (64-bit)) 60 FPS
PC (Browser Microsoft Edge 44.18362.449.0) 72 FPS

5 CONCLUSIONS
While there are some bugs left to squash, this project has provided
some insight and much needed hands on experience. The trials and
tribulations of the challenges were strenuous but still achievable.

REFERENCES
[1] Ricardo Cabello et al. 2010. Three.js. URL: https://github. com/mrdoob/three.js

(2010).
[2] Jonathan Cole. 2017. Guify. URL: https://github.com/colejd/guify (2017).
[3] gero3. 2016. Facetype.js. URL: https://gero3.github.io/facetype.js/ (2016).
[4] stemkoski. 2013. stemkoski. URL: https://stemkoski.github.io/Three.js/index.html

(2013).

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Implementation
	3.2 Milestones
	3.3 Challenges

	4 Results
	5 Conclusions
	References

